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A symmetrical rigid body with a spherical base, carrying a rotor and having a cavity in the shape of an ellipsoid of revolution, 
completely filled with an ideal incompressible liquid in uniform vortex motion, is moving along an absolutely rough plane. It is 
shown that this system admits of an energy integral, Jellett’s integral, the integral of constant vorticity and a geometric integral. 
The construction of a Lyapunov function as a linear combination of first integrals [l] yields the sufficient conditions for the rotation 
of the gyrostat about the vertically positioned axis of symmetry to be stable. The conditions for the gyrostat’s rotation to be unstable 
are found. It is shown that the rotor may prove to have either a stabilizing or destabilizing effect on the system and that the 
gyrostat admits of motions of the type of regular precession. The sufficient conditions for the stability of these motions are obtained. 
0 2002 Elsevier Science Ltd. All rights reserved. 

The conditions for the regular precession of a symmetrical rigid body with a fixed point, having an 
ellipsoidal cavity completely filled with an ideal liquid, to be stable are well known 121. The stability of 
rotations of a symmetrical rigid body, containing an ellipsoidal cavity completely filled with an ideal 
incompressible liquid, has been investigated in the case of motion on a smooth horizontal plane and a 
plane with sliding friction [3,4]. For the case of an absolutely rough plane, the necessary condition for 
the rotations of a gyrostat to be stable have been found [3], and its oscillations about its equilibrium 
position have been investigated [5]. 

1. THE EQUATIONS OF MOTION. FIRST INTEGRALS 

Consider the motion on an absolutely rough horizontal plane of a symmetrical gyrostat [6] - a heavy 
symmetrical rigid body with a spherical base, with a rotating symmetrical rotor whose axis is permanently 
attached to the body. The body contains a cavity in the shape of an ellipsoid of revolution, completely 
filled with a homogeneous ideal incompressible liquid in uniform vortex motion. It is assumed that the 
axis of symmetry of the body is also the axis of the rotor and of the cavity. 

Let O’xyz be a fixed right-handed system of coordinates with origin 0’ andx andy axes in the support 
plane, with the z axis pointing vertically upwards. We introduce a system of coordinates G515253 rigidly 
attached to the gyrostat, with origin at its centre of mass G and axes pointing along its principal central 
axes of inertia, the 5s axis being directed upwards along the axis of dynamic symmetry. 

We shall assume that the geometrical centre C of the spherical base of the body is ‘situated on the 
Z,s axis, denoting its coordinate along that axis by 1 and the radius of the spherical base by p. 

The position of the gyrostat in the system O’xyz is defined by the coordinatesxo andyo of the centre 
of mass, the Euler angles 6, w and cp of the body and the rotor’s angle of rotation 6 relative to the body. 
The nutation angle 19 is the angle between the 5s axis and the vertical. We shall assume that 19, w and 
cp vary within the limits 

Let y denote the unit vector along the vertical. The coordinates of the radius vector r of the point 0 
at which the body is in contact with the support plane are [7] 

‘I = -PYIv r2 =-py2, r3 =I-py3 (1.1) 

Let Oi (i = 1, 2, 3) be the projections onto the 51, 52 and 53 axes of the vector o of the body’s 
instantaneous angular velocity. We will assume that the generalized forces acting on the rotor vanish. 
The equations of motion of the rotor imply a first integral 
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ii+o, =Q, =const (1.2) 

stating that the projection of the rotor’s instantaneous absolute angular velocity onto its axis of rotation 
is constant [8]. 

The equations of the surface of the plane in terms of the cr, 52 and 53 axes are 

(1.3) 

where aI = a2 and a3 are the semi-axes of the cavity and ci is the coordinate of its geometric centre on 
the x3 axis. 

The Helmholtz equations of uniform vortex motion of the liquid in the cavity, in projections onto 
the &, c2 and t3 axes, are 

(1.4) 

where the symbol (123) means that the two unwritten equations are obtained from the written one by 
cyclic permutation of the subscripts 1, 2, 3; !LJi (i = 1, 2, 3) are the projections onto the kr, c2 and c3 
axes of the vector (rot v*)/2, where vt is the absolute velocity vector of the liquid particles. 

The equations of motion of the gyrostat, referred to the Z,r, t2 and E3 axes, are 

m(D, +~2~3_03~2)=-mg~, +R, (123) (1.5) 

A&, -I- A$, + (A,,o, + JR, + A;Q,)w, - ( Ae2cc2 + A;R,)w, = M, (123) (1.6) 

ir =03?2 -2% w) (1.7) 

UI = $a3 - r3~2 (I 23) (1.8) 

Equations (1.5) and (1.6) express the laws governing the variation of the momentum and angular 
momentum of the gyrostat, respectively, while Eqs (1.7) and (1.8) are, respectively, Poisson’s equations 
and relations expressing the condition that the body is rolling on the plane without sliding. Here m is 
the mass of the gyrostat, with m = ml + m2, where ml is the mass of the body-rotor system and m2 is 
the mass of the liquid, ui, Ri and Mi (i = 1,2, 3) are the projections onto the Z,r, c2 and c3 axes of the 
velocity vector of the centre of mass of the gyrostat, the reaction of the support plane and the moment 
of the reaction force about the point G, respectively, A*i = Ai + AT (i = 1, 2, 3) are the moments of 
inertia of the transformed body [9], whereA, andA = AI are the moments of inertia of the body-rotor 
system about the c1 and k2 axes and A3 and J are the moments of inertia of the body and the rotor, 
respectively, about the c3 axis. The moments of inertia At of the equivalent rigid body [9] and the 
differencesrlj between the corresponding moments of inertia of the liquid and the equivalent rigid body 
are defined by the formulae 

4 2 2 4 ‘- ---m2 aI 2 a3 A; 2 

+a: 

= - 
5 

m2al 2 

a, 5 

(1.9) 

Equations (1.6) are identical with the equations of motion of a solid with moments of inertia 
A*i (i = 1, 2, 3) and a rotor, attached to which is a rotating gyroscope with moments of inertia 
A:(i = 1, 2, 3) where the rotation of the gyroscope occurs, according to Eqs (1.4), in such a way that 
the geometry of the masses of the system remains unchanged. Consequently, the effect of the liquid, 
which is performing uniform vortex motion, is identical to the effect of a certain equivalent body and 
a rotating gyroscope, which are attached to the body-rotor system [l]. 

Having determined the quantities Ri (i = 1, 2, 3) from Eqs (1.5) and (1.8) we find 
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4 = +ly, -(r: + 3) r2 O2 +r,(qCh, +r,Cb3)-lli(Wf +W:)-hjOllO3] (1.10) 

M, = m[-( q2 + ri)03 + r3(qW, + r&)+ l(r$, - r,W,)W3] 

Taking Eqs (1.10) into consideration, Eqs (1.4) (1.6) and (1.7) form a complete system of nine 
differential equations of motion for the gyrostat. 

Note that the following relation is obtained immediately from the third Helmholtz equation (1.4) 
and from equalities (1.9) 

A;iZ, = A;(Q,w, -i&w,) 

In view of this equality, the third equation in system (1.6) may be written in the form 

d( A,,w, + JQ,) 1 dt = M, 

The system of equations of motion of the gyrostat and the liquid in its cavity admits of several first 
integrals: 
- the energy integral 

-Zmqr..w,w, -2mtjr#o,03 - 2mqr,w+, + 

+A;(# + Ri) + A# - 2mgly, = co = cons1 

- the generalized Jellett integral 

U, =Al(qwl +rp~)+r,(A,~o~+JQ,)+ 

+A;( $2, + r2R2) + ( r3 - l)A&!, = c, = const 

- the integral of constant vorticity 

u*=c2:(n:+n:) + a2Q2 = c - const , 3 2 - 

- the geometrical integral 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

Relation (1.12) may be written in the form 

u, =(KJ)-p(K’,~)=q =cOnSt 

This integral states that the difference between two scalar products is a constant. The term (K,, r) 
is the scalar product of the angular momentum vector K* of the transformed body-rotor system for 
the point G and the radius vector of the point at which the body is in contact with the support plane. 
The term p(K’, r) is the product of the radius of the spherical base with the scalar product of the vector 
K’ of the momentum of a rotating gyroscope with moments of inertia A ;, A; [l] and the unit vector of 
the vertical. 

Jellett’s integral was first obtained for a single rigid body rolling over a rough plane [lo, 111. It was 
later shown that Jellett’s integral exists in the case of a body with a rotor [8] and an extension was obtained 
for a liquid-filled body on a plane with friction [4]. We have just extended this integral to the case of a 
liquid-filled gyroscope on an absolutely rough surface. 
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2. STEADY MOTIONS. STABILITY 

Motion about a vertically directed axis of symmetry. The equations of motion of the gyrostat have a 
particular solution 

*I =02 =o, o,=w;, R,=Q*=O, ns=a’: 
(2.1) 

y, =y*=o, yJ=l 

which describes uniform rotation of the gyrostat about a vertically directed axis of symmetry and relative 
elliptical rotation of the liquid about the same axis. Let us take this as the unperturbed motion and 
analyse its stability relative to the variables oi, Oi and yj (i = 1, 2, 3). 

In perturbed motion we put 

03 =w,o+x. y3 =I+y, R, =@+z (2.2) 

The previous notation is retained for the other variables. 
To construct the Lyapunov function, we use Chetayev’s method [12, 11. Consider the function 

= ,+I: +o;)+k3x2 +q~*(O$)~(y: +Y:)- 

-2mp(p-I)o:(o,y, +~2~2)+4’(Q: +@)+A;z2 - 

-2 4 --[A.,(W,y, +w~Y~)+(AI~x+A;z)Y+A;(SZ,Y, +n2Y2)]+ 

where 

~=llp, A=A,,+m(p-O2 

The function Vis the sum of three quadratic forms, two of which have the same matrix. Applying 
Sylvester’s criterion, we find the conditions for the function V to be positive-definite 

1 0: --G>O, PI =--@ 
a-l &- a32 

P,U -&) a+1* 
a=2 

al 

--a 4 ---T+~[(A*1+J~2)(l-E)-A*,] 

( 1 (4 

mgl __+&[(A; +.&,)(l-E)-&]>“* p3 =3 

( 1 4 

(2.3) 
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By Lyapunov’s stability theorem [12, 11, inequalities (2.3) are the sufficient conditions for the 
unperturbed motion (2.1) to be stable relative to the variables wi, sZi and yi (i = 1, 2, 3). 

In the particular motion (2.1) the quantities K$ and Q”, may take arbitrary values. The values in the 
interval 0 c r S (@/o$ s 1, where z is an infinitesimal quantity, are of practical interest, since, in 
uniform rotation of the gyrostat about a vertically positioned axis of symmetry, the liquid, if it is not 
previously in vortex motion, first performs vortex-free motion and is then gradually drawn into the motion 
of the body until it is moving together with it as a single solid body [13]. 

Put e.$ = S& Then stability conditions (2.3) become 

I 
--et>0 
1-E 

mid 1 

2 (I-&)* 
+-[(A,,+Jp2)(1-&)-A*,] +A - 

( 1 4 
) ~,h,(+&-‘)‘O (24) 

wl I 

-+ (1- &)* 
( 1 w; * 

-[(A;+Jp2)(l-&)-&4&O 

~[Jp*(l-E)-EA*31 
(l-&I2 

Note that always 

l/(1-&)>O 

Indeed, if the gyrostat’s centre of mass G lies above the centre C of the spherical base, then 1 < 0 
and so 1 - E > 0; if G is below C, then 0 c 1 < p and so 1 - E > 0. Hence, if the last inequality of (2.4) 
holds, the penultimate one also holds. 

It is obvious from conditions (2.4) that if the body-liquid system and the rotor are rotating in the 
same sense, and the cavity has the shape of an oblate ellipsoid (a c l), this will have a stabilizing effect. 
But if the rotor and the body are rotating in opposite senses and the angular velocity Sz. of the rotor 
significantly exceeds the magnitude 0: of the body’s angular velocity, the rotor will have a destabilizing 
effect on the system. A cavity in the form of a prolate ellipsoid (a > 1) is also a destabilizing factor. 

Suppose the centre of mass of the gyrostat lies above the centre of the spherical base (I < 0). If the 
cavity is a strongly prolate ellipsoid (a > 1 + 2p/]Z I), the first condition of (2.4) is violated. 

If S$/w~ = z 4 1, when the motion of the liquid in the cavity is very close to potential motion, 
conditions (2.3) become 

4 I 

m+(l-E) 
-[(A,~+Jp,)(l-&)-A,,l>O 

mgl 
m+(l-E)* 

~[Jp,(l-E)-&4*31>0 
(2.5) 

The first of these conditions, obtained for a gyrostat moving on a plane of arbitrary roughness, also 
holds in the case of viscous and dry Coulomb friction [7, 141. 

In the special case of a spherical cavity (a = l), the first of conditions (2.3) means that the liquid and 
the body rotate in the same direction. In that case the rotor cannot stabilize the system. If there is no 
rotor, this result is analogous to the case of a top with a cavity on a plane with sliding friction [4]. If 
the body and the liquid in the cavity are also rotating at the same angular velocity, one obtains inequalities 
(2.5). 

The linearized equations of perturbed motion are 

cb, =-l-,0, + r*n, - r3y2, b, =rp, -r,n, +r3y,, x=0 

ri, = -r,0, + r,n,, ii, = r,0, - r,n,, i = 0 (2.6) 

j, =-~,+o~y,, y*=co,-o~y,~ j,=o 
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where 

I- 1 =hO +A2 +A%*R” 3 *3 3, l-2 =z;r;USl_n;, 
a+1 

l-, =F, r, = La;, 
a+l 

I-, =w; -c!Ll; 

~=A.3--A*i+m(p-W, j=L A,_& 
i 

-9 A 3-7 

The characteristic equation of system (2.6) is 

A(x) = x3(x6 + A,x4 + h2x2 + A3) = 0 

where 

A, = (2 + 82)(~t)2 + j281 + 2J(Bwi + A;&*@)n, + 

(2.7) 

(2.8) 

A2 = (I+ 2&(0$)4 + J12&&3 + ;i;&2(Q;,3]Q* + 

+4.%&i;& - B)(&*n& - 2& 
[ 
2;i; 

a*+1 
- - & o@,(a;)* + 
(a+])* I 

a*+1 
- 4Bi; 2 1 (&*@)*+r-j +2r3[(l+~)(0~)*+j~~n.+ 

(a+11 

4a 

+ &$a - 2)o$$ -t & & - ;i; 1 (fi:)2 3 
7 
(a+l) 

A3=((4 -a$)[&&* +.ki@,+ r31+ii;0r(hi$ -@.@2~~* 

The characteristic equation (2.8) has three zero roots and six non-zero roots, as determined from 
the equation 

X6 + AiX4 + AzX3 + As = 0 

which contains x in even powers only. A necessary condition for the motion (2.1) to be stable is that 
all the roots of this equation must be imaginary. This means that the squared roots x2 must be real and 
negative. This condition can be satisfied by requiring that the coefficients Aj (i = 1, 1, 3) satisfy the 
Hurwitz condition [ 121 

Ai >O, A,A,-A3>0 

and the condition for the roots of Eq. (2.8) as a cubic equation in x2, to be real [15] 

(2.9) 

A;(4A2 -A;)+27A;+2A,A3(2A; -9A,)<o (2.10) 

Thus, inequalities (2.9) and (2.102 are tke necessary conditions for the motion (2.1) to be stable. If there 
is no rotor (JS2* = 0) and also Q3 = w3, the necessary stability condition was obtained previously [3]. 

If inequality (2.10) is satisfied but at least one of conditions (2.9) fails to hold, some of the roots of 
Eq. (2.8) will be real and positive. In that case the unperturbed motion (2.1) is unstable [12]. 
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In the case of a spherical cavity, inequality (2.10) reduces to the form 

{[A,:, + mp(p - l)]o; + JsZ,)* + 4[A,, + m(p - f)*]mgf > 0 (2.11) 

This is known to be the condition for the stability of a top with a rotor on an absolutely rough plane 
[16]. Inequalities (2.9) become 

2(w~)2+[(~-1)~~+~sZ,]2+21-3>0, C=[Ae3+mp(p-1)1//i 

((0~)2+[(~-I)W~+~~*]2+2r3)X 

x ( [c(w;)2 + hp, + r, 12 + (&I$ - 20; + &2*)2(C0;)2) > 0 

Thus, the condition for the instability of a top with a rotor is the combination of inequalities (2.11) 
and the following inequality 

;i*(0~)2+[(~-A)o~+Ji2*]*+2Amgf<o, e=ei 

Motion ofthe type of regularprecession. The equations of motion of the gyrostat have a solution 

u; =o, 0; = hof - E6,) (2.12) 

0, = 4 
A;+&’ 

i= I, 2,3 

where h and l.~ are arbitrary constants, and yi is a solution of the equation 

h*lA*, + A,‘@, -A& - E) - A;O,]yt - WSL, = mgl 

Solution (2.12) describes the motion of a gyrostat of the type of regular precession, with the velocity 
of the centre of mass G equal to zero and the angular velocities of precession $0 and of spin +t, equal 
to 3L and -ha, respectively. The point 0 of contact of the body with the support plane describes a circle 
of radius ]1] sin e0 [17]. 

Let us take (2.12) as the unperturbed motion and analyse its stability. The Lyapunov function will 
be a linear combination of the first integrals (1.1 l)-( 1.14) 

“=lJ0+2+ +l_U./, +h*(A,, +A,‘O,)U, = 

=mv*+A,,(xf+x~)+(A;+p~)(z.~+z~)+A.p~+(A;+pa~)R~- 

-2mgfy3 -2l.(A,,~.+ +JQ,)(~--y~)-2hA$,y~ +h’(A,, + A,‘O,)y: 

where 

xi = w; - Ayyq, zj =$-kOjyy, j=l,2 

In the perturbed motion, put 

retaining the previous notation for the other variables. Then the Lyapunov function V is a positive- 
definite quadratic form in the variables ni,Xi,Yi and Zi (i = 1,2,3), provided that the following equalities 
hold: 

A;+& >O, A,, + A;@, - A,, > 0 

(2.13) A 
*3 2 

A; +P, 
[A,, + A;@, - Ae3 -A;@,] > 0 
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These equalities are the sufficient conditions for the stability of the unperturbed motion (2.12) relative 
to the variables ui, xi, Zj, y3, w3 and Q3 (i = 1, 2, 3; j = 1, 2). It follows from these inequalities that in 
the case of a gyrostat on an absolutely rough plane, the sufficient condition for the stability of the motion 
(2.12) is narrower than in the case of a rigid body with a fixed point and an ellipsoidal cavity completely 
filled with an ideal liquid [2]. 

I wish to thank V. V. Rumyantsev and A. V. Karapetyan for their interest and for discussing the results. 
This research was supported financially by the State “Leading Scientific Schools” Programme 

(00-15-96150). 
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